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Abstract 

We present a basic benchmark for a new approach to Natural Language 

Understanding (a subset of NLP) utilizing non-neural network-based Artificial 

Intelligence (“AI”) that matches, and in some instances, outperforms state-of-the-

art neural network-based NLP technology. This new procedure uses AHvosTM 

Corporation’s proprietary CRITM (“Contextually Responsive Intelligence”) AI 

technology. The English language subset of the Multilingual Amazon Reviews 

Corpus (“MARC”) is used for the benchmark. The benchmark starts with a CRITM 

AI engine that has no knowledge or pre-training of any kind related to any text 

language and it ends with text classification of the English subset of MARC. CRITM 

technology demonstrates a 91.93% text classification accuracy (accuracy 

benchmark using neural network-based NLP AI models report results in the 59% 

to 73% accuracy range). The total AHvosTM benchmark elapsed time was 1.8 

seconds. The CRITM benchmark is comprised of 2 phases: the Education Phase 

(called the Training Phase of neural networks’ NLP AI models) and the Text 

Classification Phase. Comparatively, neural network-based NLPs utilize 3 phases: 

(1) the English-based AI LLM model generation, (2) the fine tuning of the AI model 

for text classification specialized in the Amazon Reviews Corpus, and (3) the text 

classification. It is important to note the last 2 phases of neural network-based NLP 

are reported to require 10 hours on average to complete.  The AHvosTM 

benchmarking exercise was fully completed using a non-proprietary laptop with 

core i5 7th Gen CPU, 24 GB of RAM, and no GPU. CRITM technology correctly 

identified mislabeled data in the English Amazon Reviews Corpus both during the 

Education and the Text Classification phases. CRITM provides a clear linguistic 

rationale for each of its text classification decisions resulting in a significant 

improvement in the understanding of AI classification responses versus 

conventional neural network technology. Special attention should be given to the 

characteristic learning curve measured during the Education Phase showing the 

ability for the CRITM engine to self-detect when it has reached knowledge 

equilibrium (the “KE” point). KE signals that the engine has “learned the concept” 

and no additional data is required for educating the engine, resulting in faster and 

less data intensive Education Phase completion times. The CRITM engine consumed 

only 25.00% of the available training dataset provided by the English Reviews 

Corpus to reach KE. Further research has been completed by the Research and 

Development Department at AHvosTM Corporation to demonstrate that CRITM 



engines are equally valid when using non-English datasets included in the Amazon 

Review Corpus as well as other types of text-based datasets producing both similar 

and improved accuracy and performance results to the ones described in this 

benchmark. 

 

 

1 Introduction 

Natural Language Processing (“NLP”) and 

its subset Natural Language Understanding 

(“NLU”) are an integral part of current efforts 

in AI. While Large Language Models 

(“LLMs”) (such as ChatGPT) have made the 

topic popular, NLP research has been one of 

the forefronts of AI research in academic and 

private sectors for more than 20 years. 

Advances in this area are the product of 

collaborative work between linguistics, 

statisticians, and computer scientists (Lewis 

at al., 2004) (Bowman et al., 2010).  

    Human language, with its multitude of 

permutations, dialects and grammatical rules 

is an excellent source of data for use when 

evaluating measurable “intelligence” of AI 

models and related AI support technologies 

such as transformers. One of the most 

common tasks studied by NLP researchers is 

the ability for AI methods to perform text 

classifications.  

    Over the years, and thanks to the 

popularity of text-based social media 

platforms and e-commerce sites, many 

language datasets formatted specifically for 

NLP AI research have become publicly 

available (Bowman et al., 2015) (Pak et al., 

2010). Datasets include single and multiple 

languages.  

    Some NLP research is focused on text 

classification tasks within a single language, 

such as text summarization, text labeling, and 

text generation. Other AI research is aimed at 

developing AI algorithms that can be applied 

across multiple languages, such as language 

detection, text labeling, and sentiment 

analysis (Keung et al., 2020). 

    Textual Sentiment Analysis is a form of 

NLP text classification aimed at labeling text 

based on a summary of the “sentiment” 

expressed in a piece of text. While the 

resulting label is in some instances 

represented via a single word (positive, 

negative) or a symbol (smile icon, unhappy 

icon, thumbs up icon, thumbs down icon), it 

is most generally captured as a range of 

repeated symbols. The range goes from 

negative sentiment (single symbol such one 

star icon or one thumbs up icon) to positive 

sentiment (5 stars or thumbs up icons, for 

example). 

Over the last 70 years, and since its inception, 

the field of AI has been predominantly 

characterized by the utilization of 

perceptrons and the neural networks that they 

form.  

   While many attempts have been made to 

formulate that neural networks imitate or 

model the types of networks and interactions 

between neuron cells (and their dendrites) as 

observed in biological brains, these 

formulations lack the explanatory power of 

the complexity of behavior exhibited by their 

biological counterparts.  



    Many AI researchers argue that these 

critiques are the byproduct of neural 

networks not having reached yet the large 

number of perceptron nodes and neural 

connections typical of biological brains.  

    A limited, smaller group of AI researchers, 

both in the academic and private sectors, aim 

to find robust and viable alternatives to neural 

network-based AI methods and related 

technologies without sacrificing performance 

and/or accuracy. 

    AHvosTM Corporation is primarily an AI 

research private organization that has the 

ability to complete advanced AI tasks 

without the use of neural networks and 

without the utilization of the resources 

typically associated with complex neural 

networks (such as supercomputers, large 

amounts of labeled training datasets, and long 

training times -months to years).  

    NLP Textual Sentiment Analysis is 

considered an advanced AI task, and most of 

its AI research has been limited to the use of 

neural network-based AI approaches. 

    This benchmark exercise is focused on 

NLP Textual Sentiment Analysis utilizing the 

English subset of MARC (Keung et al., 2020) 

using AHvosTM Corporation’s proprietary 

CRITM (“Contextually Responsive 

Intelligence”) AI technology. This 

technology does not relay, use, or leverage 

neural networks. The aim of the benchmark 

is to showcase a non-neural network-based 

AI technology accomplishing this type of 

NLP task. 

    MARC was selected because it is one of 

the best publicly available datasets to study 

and validate the behavior and accuracy of 

NLP Textual Sentiment Analysis AI 

methodologies. This dataset is characterized 

by a well-balanced set of product reviews in 

English, Japanese, German, French, Spanish 

and Chinese. The reviews have been curated 

using well established AI data standards 

(Keung et al., 2020). 

    Each review, independent of language, 

provides all the information required to train 

and validate both neural network-based AI 

models and non-neural network-based AI 

technologies. Information in the dataset 

includes review ID, review title, review body, 

review label (i.e., classification) expressed as 

a range from 1 star (negative) to 5 stars 

(positive), and product category. 

    Each language dataset in MARC contains 

200,000 training reviews, 5,000 development 

reviews, and 5,000 test reviews. That means 

that for each classification label there are a 

total of 40,000, 1,000 and 1,000 training, 

development and testing reviews 

respectively. 

2 Data Preparation 

2.1 Data Characteristics 

For purposes of this benchmark, we utilize 

the English subset of MARC. We focus on 

the following fields included in the dataset 

(fields not mentioned are ignored even if 

present in the dataset): (1) review ID, (2) 

review user label, (3) review title, and (4) 

review body. We keep the reviews in separate 

subgroups to be able to differentiate between 

training, development, and testing subsets. 

    The training subset is used to educate the 

CRITM engine during the Education Phase. 

The development subset is used to determine 

Knowledge Equilibrium (referred to as the 

“KE Point”), and to measure engine logical 

self-consistency during the Education Phase, 

and to measure engine accuracy during the 

Text Classification Phase. The testing subset 



is used to measure engine accuracy during the 

Text Classification Phase. 

    The English subset of MARC shows a 

preferential data length bias towards user 

labeled negative reviews. This bias provides 

more verbose review bodies than the review 

bodies of user labeled positive reviews. This 

bias does have a predicted effect on CRITM 

engines resulting in a potential accuracy gain 

of up to 5.07% when correctly classifying 

negative reviews in contrast to positive 

reviews. The bias only affects correct 

classification, and it is not predicted to 

influence an increase on incorrectly 

recognizing a review’s label. 

    The English subset of MARC exhibits a 

significant number of grammatically 

incorrect sentences within the review title 

and/or the review body. Incorrect grammar is 

common in online conversations, so this 

finding is not surprising. Incorrect grammar 

does have a predicted harmful effect in 

correctly understanding sentences within a 

review for CRITM engines. While CRITM 

engines provide a significant resilience to 

noise in education datasets (approximately 

25.00%), if the dataset shows significant 

noise, as is the case with the English subset 

of MARC, the impact is a reduction of 

predicted engine accuracy of up to 9.78%. 

    Incorrect grammar is a type of “noise” 

signal when performing NLP tasks. Some 

examples of severe incorrect grammar were 

found in the reviews of the English subset of 

MARC such as: (1) incorrect punctuation, (2) 

incorrect use of ellipses, and (3) incorrect use 

of words (including wrong verb tenses and 

misspelled words).  

   CRITM engines are logic engines, and they 

must not be confused with neural networks. 

There are no ‘weights’, or ‘cost functions’ 

used to minimize cost during the Education 

Phase. CRITM engines are not LLMs either and 

they do not contain millions or billions of 

weights as commonly found in LLM AI 

models (Keung et al., 2020) (Devlin et al., 

2019). Instead, logical engines are 

characterized by their ability to identify the 

rationale (i.e., ‘logic’) for the user labels 

provided in training datasets during the 

Education Phase. CRITM engines do not 

blindly trust the labeling provided during the 

Education Phase and they are able to 

correctly identify mislabeled data in the 

training dataset during the Education Phase. 

A measure of the total mislabeled content 

provided during the Education Phase is 

linearly proportional to the engine’s self-

consistency measured when the KE point is 

reached, and it could be estimated as follows: 

𝐿𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐶𝑘(1 − 𝑒𝑛𝑔𝑠𝑒𝑙𝑓
𝐾𝐸 )  

where Lincorrect is the ratio of incorrectly 

labeled data present in the training dataset as 

identified during the Education Phase, Ck is a 

constant (usually equal to 1) that adjusts for 

labeling bias that may be present in the 

dataset, and engKE
self is the measured self-

consistency of the CRITM engine at the KE 

point. 

    From a linguistic and logical perspective, 

(user or engine generated) review labels are a 

summary of the concepts expressed in the 

review title and the review body. Review 

labels represent the dominant tone of their 

contents. Review titles and review bodies are 

the contents within a review. Review titles 

and review bodies are composed of 

sentences.  

    Sentences are also labeled. Label 

sentences represent the dominant tone of 

their content. Sentences are groupings of 

words and punctuation at specific locations 



within a sentence. The location of the words 

and punctuation are dictated by the 

grammatical rules of a specific language.  

    While grammatical rules tend to be logical 

for most of the relationships between words 

in a sentence, each language has special 

usage that directly contradicts the general 

grammatical rules for that language. Words 

are made of letters (and accentuation symbols 

for some languages different from English). 

     It is important to notice that the label of a 

review represents the ‘summary’ of the 

sentence labels that it contains. That means 

that two separate logical rules must be 

followed for the review to be considered 

correctly labeled.  

(1) For reviews that contain more than one 

sentence in the review title and/or the 

review body, most of the sentence 

labels must match the label of the 

review. Conversely, this implies too 

that not all of the sentence labels within 

a review are equal to the review label. 

(2) For reviews that contain only one 

sentence in the review title and one 

sentence in the review body, the labels 

of these single sentences must match 

the label of the review. 

     A simple way to understand these two 

logical rules is that if all sentences contained 

in a review are, let’s say, labeled as negative 

sentences, the label for the review itself 

cannot be correctly labeled as positive.  

    In some isolated circumstances sarcasm is 

used in the review body and/or review title of 

a review. In these cases, because of the use of 

sarcasm, which is a human construct not 

defined by grammatical rules, the two logical 

rules are violated. 

    CRITM engines are logical engines, and as 

such, they commonly fail to correctly identify 

sarcasm. Some of the reviews provided in the 

English subset of MARC use sarcasm so it is 

predicted that a fraction of these reviews 

would not be correctly identified by the 

engine, impacting its measured accuracy 

during the benchmark exercise.  

   A final source for violation of the two 

logical rules is user entry error when creating 

the review itself. A user selects the label for 

the review (i.e., its star rating) independently 

of writing the review title and the review 

body. Most of these user entry errors are 

correctly identified within Lincorrect and it has 

no significant impact on the measured 

accuracy for the engine during the 

benchmark exercise.  

2.2 Data Pre-processing 

The English subset of MARC was 

downloaded and stored as master data files. 

We created new education files from the 

master data files to facilitate faster I/O 

processing. Additionally, we did some basic 

text string cleanup to simplify ingestion of 

data during the education phase such as 

removal of trailing spaces, etc. Sentences 

containing only non-alphanumeric characters 

were discarded to avoid unnecessary noise in 

the data. 

    Subjectivity in the logic applied by users 

when rating a review introduces a user’s 

personal opinion, and this subjectivity is not 

shared between all users. This results in 

ratings that are not logically consistent across 

the range when the rating is separated by one 

or two stars. For example, what one user rates 

as a 4 star review is rated as a 5 star review 

by another user.  Because of this we focused 

the benchmark in a binarized classification 

task, where data subjectivity is avoided. 



    Binarized classification focuses on the 

reviews at the ends of the range (i.e., the 1 

star and 5 star user labeled reviews). This 

approach has been adopted previously by 

other benchmarks using neural network-

based AI models (Keung et al., 2020). 

    Due to binarized classification, the total 

data utilized in the benchmark was limited to 

80,000 training reviews available to the CRITM 

engine to be used during the Education 

Phase, 2,000 evaluation reviews, and 2,000 

testing reviews. The evaluation and testing 

reviews were used during the Text 

Classification Phase. 

3 Benchmark Results 

The benchmark focuses on four areas:  

(1) Accuracy of the CRITM engine to 

correctly classify the reviews in 

the validation and testing datasets.  

(2) Total time it takes to complete the 

benchmark exercise (i.e., the time 

to complete both the Education 

Phase and the Text Classification 

Phase).  

(3) The amount of training data 

needed to educate the engine.  

(4) The hardware needed to perform 

the benchmark exercise.  

 

    Accuracy is defined as the percentage of 

correctly labeled reviews by the CRITM engine 

using both the development and test datasets. 

Because CRITM engines do not need a ‘fine-

tuning’ phase, there is really no need to have 

separate development and test datasets, so 

both datasets are combined into one dataset 

and are used during the Text Classification 

Phase. 

    CRITM engines detect when new concepts 

that the engine was not exposed to previously 

are presented during the Text Classification 

Phase. The detection is captured under the 

term Newness, which is defined as the ratio 

of new conceptual information perceived by 

the engine over the total information received 

by the engine: 

𝑁𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑ 𝐼𝑛

∑ 𝐼𝑟
 

where In is the detected new information 

perceived by the engine and Ir is the 

information received by the engine. 

    Newness, by definition, is equal to zero 

during the Education Phase since during this 

phase all information received by the engine 

is considered new information that the engine 

has not acquired yet. 

    Newness is predicted to impact accuracy. 

Because CRITM engines are factual engines 

(i.e., their responses are based on acquired 

knowledge, not on extrapolation or 

guessing), the higher the newness, the lower 

the confidence in the responses from the 

engine and the lower the accuracy of these 

responses.  

    For example, the relationship between 

accuracy and newness is conceptually 

parallel to asking an expert in US history 

multiple questions about general history and 

the expert correctly identifying when a given 

question is not specific to US history and his 

responses to these non-US history questions 

being less accurate than his responses to US 

history questions. 

    Self-consistency is the ability for a CRITM 

engine to test itself during the Education 

Phase on the concepts it has learned. Self-

consistency is used to signal if logical 

inconsistencies in labeling are present in the 



training dataset (i.e., detecting incorrectly 

user labeled data). Based on the self-

consistency detected, the engine calculates 

the maximum potential accuracy for its 

responses given the training data provided. 

Self-consistency can also be used by human 

operators to correct the user mislabeled data. 

    While self-consistency could be easily 

confused with the cost function of neural 

network-based AI, it is important to notice 

that they are not equal. Cost functions are 

used to recalibrate the weights where the 

perceptron interconnects to other perceptrons 

to reduce the measured cost during the 

Training Phase.  

    There is no recalibration of any weights or 

any other parameters in the CRITM engine 

based on the results of self-consistency. 

CRITM engines do not have perceptrons or 

weights and their learning behavior is not 

based on any minimization/maximization of 

cost-like functions. Self-consistency is used 

only to calculate the predicted maximum 

potential accuracy for an engine given the 

training data provided. 

    CRITM engines use internal knowledge 

domains to calculate their responses. 

Knowledge domains are labeled for easy 

understanding by the human operator. For 

this benchmark exercise, the CRITM engine 

used its p, m, ps and ms domains. The ps 

domain is given preference first, followed by 

the ms domain, the m domain next, and 

finishing with the p domain. 

    Knowledge equilibrium (known as the KE 

point) signals when the engine has reached its 

calculated maximum potential accuracy, 

indicating that the ‘concept’ has been learned 

and that no additional training data is needed 

to further educate the engine on the ‘concept’. 

While this is factually demonstrated for 

CRITM engines both mathematically and 

experimentally, the demonstration is outside 

the scope of this benchmark exercise. 

    The key differentiator of non-neural 

network-based AI approaches when 

compared to neural network-based AI models 

during the Education Phase (the Training 

Phase for neural network-based AI models) is 

highlighted by the KE point. Neural networks 

operate under the principle that the more data 

that is fed into the AI model, the more robust 

and optimal their weights get resulting in 

better AI model accuracy. Non-neural 

network-based AI approaches that leverage 

KE can stop their need to be trained with 

additional data when the KE point is reached 

because feeding more data into the engine 

would not result in an increase of its 

accuracy. 

3.1 Education Phase 

During the Education Phase the CRITM engine 

was educated on the following concepts: 

(1) Reviews contain sentences. 

(2) Reviews have ratings expressed as 

review labels. 

(3) Sentences contain words. 

(4) The order of words in sentences is 

determined by grammatical and 

punctuation rules. 

(5) Sentences have ‘sentiment’ expressed 

as sentence labels. 

(6) The review label is the ‘summary’ of 

the sentence labels for the sentences 

contained within a review. 

(7) Words contain alphanumeric 

characters. 



    The CRITM engine processed the training 

dataset at intervals of 1,000 reviews. After 

each interval, the CRITM engine performed 

self-consistency measurements. Self-

consistency reported approximately 3.92% 

mislabeled data in the training dataset’s 

reviews and a maximum potential accuracy 

of 92.86%. Correcting mislabeled data is 

outside the scope of this benchmark exercise.   

    The Education Phase was run on a non-

proprietary laptop with core i5 7th Gen CPU, 

24 GB of RAM, and no GPU. 

    The total time to complete the Education 

Phase was 1.2 seconds. CPU utilization was 

on average in the 60% to 63% range and 

memory utilization peaked at 143 MB.  

    The KE point was reached at interval 20 as 

per the knowledge curve in Figure 1. At 

interval 20, only 20,000 training reviews 

were used to reach the KE point, which 

corresponds to 25% of the total 80,000 

training reviews available to the engine for 

this phase. 

 

 

3.2 Text Classification Phase 

During the Text Classification Phase, the 

CRITM engine used a total of 4,000 reviews to 

measure its accuracy. The measured accuracy 

was 91.93%. 

    The measured accuracy was 0.93% less 

than the maximum predicted accuracy 

calculated with self-consistency. The 

Figure 1 - Self-consistency graph showing the KE point identified at batch run 20 for the benchmark 

exercise. 



rationale for the difference is outside the 

scope of this benchmark exercise. 

       The Text Classification Phase was run on 

a non-proprietary laptop with core i5 7th Gen 

CPU, 24 GB of RAM, and no GPU. 

    The total time to complete the Text 

Classification Phase was 0.6 seconds. CPU 

utilization was on average in the 30% to 32% 

range and memory utilization peaked at 32 

MB.  

    As expected, there is a difference in the 

accuracy of correctly labeled negative 

reviews and positive reviews. The difference 

is shown in Table 2. The difference is 

explained by the dataset bias towards 

negative reviews which contain more 

sentences within their review bodies as 

pointed out in subsection 2.1. 

Label Generated 

by CRI Engine 
Accuracy (%) 

Positive 91.88 

Negative 91.99 

 

Table 2 – Difference in accuracy of CRITM 

engine when generating review labels for 

positive and negative reviews. 

    Newness was identified in some of the 

reviews contained in the dataset used during 

the Text Classification Phase. As expected, 

the accuracy dropped for reviews with 

newness as compared to reviews without it. 

Table 3 shows the accuracy for reviews with 

newness and without it. The impact on 

accuracy due to newness is characterized by 

a reduction in accuracy up to 20.00% when 

compared to the accuracy without it. While 

optimizations in the generation of training 

data are possible to reduce the impact due to 

newness, optimization of the impact due to 

newness is outside the scope of this 

benchmark exercise. 

Label Generated by 

CRI Engine 
Accuracy (%) 

No Newness (N=0) 91.93 

With Newness (N>0) 74.28 

 

Table 3 – Difference in accuracy of CRITM 

engine when generating review labels due to 

newness. 

4 Conclusion 

The benchmark exercise took 1.8 seconds to 

complete, reaching a measured accuracy of 

91.93%. 

    The benchmark used the English subset of 

the MARC dataset. The benchmark exercise 

had two distinct phases: the Education Phase 

and the Text Classification Phase. It took 1.2 

seconds to complete the Education Phase and 

0.6 seconds to complete the Text 

Classification Phase.  

    The Education Phase used only 25% of the 

training data to educate the CRITM engine, 

resulting in a reduction of 75% less data 

needed to educate the engine as provided in 

the dataset. 

    The benchmark was run in full on a non-

proprietary laptop with core i5 7th Gen CPU, 

24 GB of RAM, and no GPU. 

    The benchmark exercise results 

demonstrate the non-neural network-based 

AI approaches to NLP tasks produce results 

that are better when compared to the results 

obtained via neural network-based AI models 

in the four focus areas selected. Table 4 

summarizes the comparison.  

     



Focus Area 
Result 

CRITM 

Result 

Neural 

Network-

based AI 

Accuracy 91.93% 

52% to 73% 

(Keung et 

al., 2020) 

Total Benchmark 

Elapsed Time 

1.8 

seconds 

mBert 

training is 

unknown 

plus 10 

hours for 

fine-tuning 

and 

evaluation 

(Keung et 

al., 2020) 

Hardware 

Regular 

consumer 

laptop 

mBert: 

unknown, 

rest of work 

using AWS 

p3.8xlarge 

instance 

(Keung et 

al., 2020) 

Data Required for 

Education/Training 

Phase 

25% 

100% 

(Keung et 

al., 2020) 

 

Table 4 – Difference on focus area results 

between CRITM AI technology and neural 

network-based AI technology. 

The CRITM engine is a non-neural network-

based AI approach and the results captured in 

this benchmark exercise demonstrate that it is 

very well suited for NLP tasks such as text 

classification. 

    Since the MARC dataset also contained 

reviews in languages different than English, 

the same CRITM engine was used to evaluate 

its accuracy with some of these languages. 

Table 5 shows the accuracy measured for 

English, Spanish, German and French, 

providing further evidence for the fitness of 

CRITM engines to operate across multiple 

languages. 

Language Accuracy (%) 

English 91.93 

Spanish 90.64 

French 90.10 

German 90.78 

     

Table 5 – CRITM engine accuracy when 

generating review label measured for 

different languages included in the full 

MARC dataset. 
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